Half-Life

def: The time it takes for half of the radioactive material found in a nucleus to decay.

Info:

- Could be short, as little as 0.16 seconds to decay or long, 1 300 000 years.
- Each radioactive element has its own half-life, it is characteristic.

	Half-Life	Time unit	Emitter
Uranium-238	4,468	billion of years	alpha
Thorium-234	24,10	days	beta -
Protactinium-234	6,70	hours	beta -
Uranium-234	245 500	years	alpha
Thorium-230	75380	years	alpha
Radium-226	1 600	years	alpha
Radon-222	3,8235	days	alpha
Polonium-218	3,10	minutes	alpha
Plomb-214	26,8	minutes	beta -
Bismuth-214	19,9	minutes	beta -
Polonium-214	164,3	microseconds	alpha
Plomb-210	22,3	years	beta
Bismuth-210	5,015	years	beta
Polonium-210	138,376	days	alpha
Plomb-206	Stable		

HL	Day	Time	% In system	
Half 1	Friday	2pm	100	001.00
Half 2	Sat	8pm	50	30 hour
Half 3	Monday	2am	25	110
Half 4	Tuesday	8am	12.5	halb.ck
Half 5	Wednesday	2pm	6.25	110-0
Half 6	Thursday	8pm	3.125	
Half 7	Saturday	2am	1.5625	
Half 8	Sunday	8am	0.78125	

Carbon Dating 14.mp4

How Does Radiocarbon Dating Work_ - Instant Egghead #28.mp4

Example 1- Determining length of half life

Using the chart below, determine the half life of the substance.

HL	Day	Time	% In system
Half 1	Friday	2pm	100
Half 2	Sat	8pm	50
Half 3	Monday	2am	25
Half 4	Tuesday	8am	12.5
Half 5	Wednesday	2pm	6.25
Half 6	Thursday	8pm	3.125
Half 7	Saturday	2am	1.5625
Half 8	Sunday	8am	0.78125

Example 2-

Te 130's half life is 7 days. How long would it take to have less than 1 g of Te left if you start with 35.0 g. What percentage of Te would be left?

	1/2 life(Days)	Mass (g)	Percent (%)
	1/2 iiie(Days)	()	1 GICGIII (70)
		35. <i>0</i> 9	100'1.
1st	14.16e 7	17.5g	501.
2n	1,1	8.759	251.
30	a 21	4.49	12.51.
4	28	ر ا ا ا	6.25%
5	35	1.19	3. ('/.
6	42	.559	1.6 1/.
	42da	ys > lg	1.6/

Example 3

Polonium's half-life is 0.16 s. You have 10.0 g, how long would it take you to have less than 2 g? What % will be left?

	half life (s)	Mass (g)	Percent (%)
	0	109	1.001
1	0.165	59	501.
2	0.325	Q.59	a51.
3	. 0.48s	1.25g	12.5%
		485 Ta.	5 '/.

Example 4

You found 7.0 g of a radioactive substance you think is 70 000 years old. Would it be better to use carbon-14 which has a half-life of 5 770 years or plutonium with a half-life of 24 000 years to date the object?

	Carbo	on 14	Plutonium		
	1/2 life	mass	%	1/2 life	
	0	7	100	0	
1	5770	3.5	50	24 000	1
2	11 540	1.8	25	48 000	2
3	17 310	.9	12.5	72 000	3
<u> </u>					~
	23 080	.45	6.3		
	28 850	.23	3.1	2514	anima ia battan
	34 620	.12	1.6	bec	onium is better ause when you
	40 390	.060	.78	still	ch 72 000 years you have almost 1 gram and 12.5%. Carbon
	46 160	.030	.39	at 7	2 000 years has
	51 930	.0015	.20		ually nothing left of stance.
			1	l	

When is it best to use something with a short half life?

When the radioactive substance is being used for medical purposes (nuclear medicine). You do not want radiation to stay in the body for a long time. Eliminate quickly

When is best to use something with a long half life?

When you are "dating" something very old (fossil)

- Carbon_Dating_14.mp4
- How_Does_Radiocarbon_Dating_Work__-_Instant_Egghead_#28.mp4