Solutions

Solutions: a homogeneous mixture of two or more substances where different phases (solids, liquids or gases) cannot be seen

Made up of a solute and solvent.

Solute: gets dissolved in another substance

Solvent: substance that dissolves the solute.

Solubility: maximum amount of solute that can be dissolved in a given amount of solvent.

Concentration: is the proportion of solute/solvent in a solution

→ Concentrated

Solutes, solvents, solutions and scallywags.mp4

How can you make a drink more concentrated?

Formula to solve for concentrations

C = m/v C=concentration

m = mass

v= volume of solution

Conversions:

500 ml or 0.5 L

to go from ml to L you must ÷ by 1000 2 500 ml = 2.5L

2- to go from mg to g you must ÷ 1 000 ex: 5 mg = 0.005 g 0.4 mg = 0.0004 g

to go from g to mg you must x by 1000 5 g = 5000mg

Concentration can be expressed as:

percentage %	PPM	g/L	mg/L (ppm)
g/ml x 100	g/ 1000000 ml g/1000L mg/L	g/l or g/ 1000ml	g/1000ml
Ex: \frac{30_9}{100ml} x100 =30/.	509 100000m =50ppm 50mg =50ppm	25g 1000 mL	15 mg ; r g

When doing the math you are making the Travel Pictures concentration proportional. How?

$$\frac{6}{10} \frac{12}{40} = 0.3$$

$$\frac{100}{3} \text{ wr} = \frac{1000 \text{ mr}}{x} = 300$$

Procedure to make a solution

- 1. Weigh (mass) solute
- 2. Put solute in ______ (volume) volumetric flask)
- 3. Add some water and swirl
- 4. Add water to line
- 5. check miniscus

REVIEW

always convert all units to g/ml

- L = 1000ml
- ppm= 1 000 000 ml
- $\% = g/ml \times 100$

For answers to solution problems refer to document call solution problems answers

Past exam Questions

A lake is considered polluted if the concentration of mercury exceeds 8 ppm.

You take a sample of three different lakes to verify if any are polluted.

Results from samples takes from lakes

Lake	Mercury concentration	
Lake 1	0.0005%	
Lake 2	2.5 mg/L	
Lake 3	0.085 g/L	

Determine if any of the lakes have a lethal concentration of mercury.

Attachments

Concentration.mp4

Solutes__solvents__solutions_and_scallywags.mp4